18. CHEMISTRY

नोट : प्रत्येक भाग से बराबर—बराबर प्रश्न रखे जायेंगे। प्रत्येक भाग से सभी अभ्यर्थीयों द्वारा प्रश्न हल किया जाना अनिवार्य होगा।

INORGANIC CHEMISTRY

- 1. Chemical periodicity.
- 2. Structure and bonding in homo and hetero molecules, including shapes of molecules (VSEPR Theory).
- 3. Concepts of acids and bases, Hard- Soft acid base concept. Symbiosis, theoretical basis of hardness and softness, electronegativity and hardness and softness.
- 4. Chemistry of the main group elements and their compounds. Allotropy, synthesis, structure and bonding, industrial importance of the compounds.
- 5. Chemistry of transition elements, transition metal complex and coordination compounds: bonding theories, spectral and magnetic properties and reaction mechanism. Spin crossover in coordination compounds.
- 6. Inner transition elements: spectral and magnetic properties, analytical applications.
- 7. Organometallic Compounds: Nomenclature and classification based on nature of metal-carbon bond. Metal Carbonyls. EAN and 18- electron rule. Organometallics in homogeneous catalysis.
- 8. Cages and metal clusters.
- 9. Analytical Chemistry: Separation techniques, spectroscopic, electro and thermo analytical methods.
- 10. Bioinorganic Chemistry: Role of metal ions in biology, essential and trace elements in biological systems. Photosystems, porphyrins, metallozymes, oxygen transport, electron transfer reactions, biological nitrogen fixation, metal complexes in medicines.
- 11. Physical Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mossbauer, UV-Vis, NQR, MS, electron spectroscopy and microscopic techniques.
- 12. Nuclear Chemistry: Nuclear reactions, radio analytical techniques and activation analysis.
- 13. Supramolecular Chemistry.

PHYSICAL CHEMISTRY

- 1. Basic principles and applications of quantum mechanics, hydrogen atom, angular momentum.
- 2. Approximate methods of quantum mechanics: variational principle, perturbation theory up to second order in energy, applications.
- 3. Basics of atomic structure, electronic configuration, shapes of orbitals, hydrogen atom spectra.
- 4. Theoretical treatment of atomic structures and chemical bonding.

- 5. Chemical applications of group theory, symmetry elements, point groups, character tables, selection rules.
- 6. Basic principles and application of spectroscopy: rotational, vibrational, electronic, Raman, ESR and NMR.
- 7. Chemical thermodynamics.
- 8. Phase equilibria.
- 9. Statistical thermodynamics: Boltzmann distribution, kinetic theory of gases, partition functions and their relation to thermodynamic quantities- calculations for model systems.
- 10. Chemical equilibria.
- 11. Electrochemistry: Nernst equation, electrode Kinetics, electrical double layer.
- 12. Chemical Kinetics: Empirical rate laws, Arrhenius equation, theories of reaction rates, determination of reaction mechanisms, experimental methods for fast reactions.
- 13. Concepts of catalysis.
- 14. Polymer Chemistry: Molecular weights and their determinations, kinetics of chain polymerization.
- 15. Solids: Structural Classification of binary and ternary compounds, diffraction techniques, bonding, thermal, electrical and magnetic properties.
- 16. Colloids and surface phenomena.
- 17. Data analysis.
- 18. Nano Chemistry: Scope of nanomaterials, mathods of preparations, characterization, determination of particle size and surface structure.

ORGANIC CHEMISTRY

- 1. IUPAC nomenclature of organic compounds including regio and stereoisomers.
- 2. Principles of stereochemistry, conformational analysis, isomerism and chirality, reactive intermediates and organic reaction mechanisms.
- 3. Concept of aromaticity.
- 4. Pericyclic and other related concerted reactions.
- 5. Name reactions: Vilsmeier reaction, sharpless asymmetric epoxidation, stobbe reaction, Heck reaction, Still reaction, Sonogarishira and Negishi coupling. Barton reaction and Favorskil reaction.
- 6. Transformations and rearrangements.
- 7. Principles and applications of organic photochemistry. Free radical reactions.
- 8. Reactions involving nucleophilic carbon intermediates.
- 9. Oxdidation and reduction of functional groups.
- 10. Common reagents (organic, inorganic and organometallic) in organic synthesis.
- 11. Chemistry of natural products such as steroids, alkaloids, terpenoids, peptides, nucleic acids and carbohydrates.

- 12. Selective organic transformations: Chemo selectivity, regioselectivity, stereoselectivity, enatioselectivity, protecting groups.
- 13. Chemistry of aromatic and aliphatic heterocyclic compounds.
- 14. Physical characterization of organic compounds by IR, UV-Vis, MS and NMR spectroscopy.
- 15. Green Chemistry: Basic principles, green reagents, green catalyst, phase transfer catalysis for green synthesis, choice of starting material.
- 16. Medicinal Chemistry: Development of new drugs, structure-activity relationship (SAR), Quantitative Structure activity relationship (QSAR). Chemistry of Antineoplastic agents and cardiovascular drugs.

Environmental Chemistry: Concept and scope, terminology and nomenclature, Environmental segments, Aerosols, photo chemical smog, BOD and COD.